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The Density of States in the Anderson Model 
at Weak Disorder: A Renormalization Group 
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We study the density of states in a hierarchical approximation of the Anderson 
tight-binding model at weak disorder using a renormalization group approach. 
Since the Laplacian term in our model is hierarchical, the renormalization 
group transformations act essentially on the local potential distribution and the 
energy. Technically, we use the supersymmetric replica trick and study the 
averaged Green's function. Starting with a Gaussian distribution with small 
variance, we find that the density of states is analytic as soon as the variance of 
the potential is turned on, except possibly near the band edge, where we can 
show this only for c~ > x/2, which corresponds to d>4 .  Moreover, it is pertur- 
batively close to the free one, except near the eigenvalues of the (hierarchical) 
Laplacian, where it is given (up to perturbative corrections) by the rescaled 
potential distribution. 

KEY WORDS: Anderson model; density of states; weak disorder; hierarchi- 
cal model; renormalization group. 

1. I N T R O D U C T I O N  

T h e  A n d e r s o n  m o d e l  (:) is g i v e n  b y  the  r a n d o m  H a m i l t o n i a n  ( for  r ev i ews  
see, e.g., refs. 2)  

H =  - A + V  (1.1)  

o n  /2 (Za ) ,  w h e r e  A is t he  f in i t e -d i f fe rence  L a p l a c i a n  a n d  V(x) ,  x ~ Z d, a re  

i n d e p e n d e n t ,  i d e n t i c a l l y  d i s t r i b u t e d  r a n d o m  v a r i a b l e s  w i t h  a c o m m o n  dis-  
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tribution #. We will always choose # with mean zero and denote its 
variance by xf2. In this paper we study a hierarchical version of this model, 

H~= - A = +  V (1.2) 

on 12(7/), where A~ is the hierarchical Laplacian of Dyson, (3 5) and the 
potential is chosen as before. The precise definition of A~ will be given in 
Section 2. Note that although this model is defined on 7/, for different 
choices of the parameter c~ it is supposed to mimic the Anderson model in 
different dimensions (or, if preferred, a one-dimensional model with long- 
range hopping term). We also emphasize that our model is quite different 
from another type of hierarchical Anderson model, in which the random 
potential was chosen in a hierarchical way. (6'7) 

In recent years there has been a great deal of progress in the mathe- 
matical understanding of the properties of the Anderson model. The results 
concern the question of "localization" as well as the smoothness properties 
of the density of states. Localization has been demonstrated in d = 1, or else 
for 2 large or for energies well outside the band, for large classes of 
distributions/~.(8-11) For  the density of states, again much is known about 
the smoothness properties in one dimension (~~ 16); in higher dimension, 
results have required either ~, or E large, (lv-191 with the exception of the 
general bound of Wegner (2~ (see also ref. 21 for a generalization), which 
shows that the density of states has a bounded derivative, provided the 
distribution # is absolutely continuous with a bounded density. 

Most of these results are obtained by considering - A  as a perturba- 
tion of the potential term. The converse situation, where the potential 
should be a weak perturbation of the laplacian, has been very difficult t o  
analyze. In one dimension, the perturbation expansion for the density of 
states has been investigated extensively, (22-25) but even there the results are 
not completely satisfactory. In particular, the question of whether for 
Bernoulli distributed potentials the density of states is smooth at weak 
disorder is still open. In higher dimensions, we are not aware of any 
rigorous results. 

In particular, there exists no proof that extended states exist for 
sufficiently small disorder, in any dimension (there are results to that 
extent for the Bethe lattice(26'27); however, a complete proof has not been 
published). 

In this situation a better understanding of the weak-disorder regime of 
the Anderson model is extremely desirable. We believe that a viable 
approach to this problem must follow the ideas of the renormalization 
group. With the present paper we establish a first step toward this goal. We 
consider the presumably simpler problem of studying the Green's function 
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(density of states) and we study the hierarchical approximation to the full 
model. The results we obtain in this case are very encouraging and confirm 
our expectations. 

We would like at this point to give a general outline of our approach. 
The density of states N(E) is defined as 

1 
N(E) = lim { #eigenvalues ofH(A) ~< E} (1.3) 

It is known that this quantity exists and is almost surely independent of the 
potential. ~28-31~ Moreover, the averaged Green's function 

I A l ~  ~ <x t (H- -~ )  1Ix)  (1.4) 
x E A  

is the Borel transform of the measure dN(E) (see, e.g., ref. 31), i.e., 

dN(z) (1.5) 
G(E) = f E -  z 

and if dN .... and dNsing denote the absolutely continuous and the singular 
part of dN, respectively, then 

dNa.r ) 1 
~G( E + iO ) (1.6) 

dE 

and dNsing is supported by the set 

{ E ~ [  l i m ~ G ( E + i e ) = ~ }  
e ~ 0  

We will therefore always consider the averaged Green's function. To 
compute it, we write the Green's function in terms of a functional integral 
over "superfields." This "supersymmetric replica trick" goes back to Parisi 
and Sourlas, (32 34) and has been used frequently in this context. (15'16"19'35~37) 
It allows one to compute the average over the random fields. We take the 
distribution of the potential to be Gaussian, and thus end up with a super- 
symmetric q54 model. 

Arranging the functional integral over the superfields in a hierarchical 
fashion, we derive the renormalization group transformations. Since our 
Laplacian is chosen hierarchically, the renormalization group transforma- 
tions preserve the structure of this model and only renormalize the local 
terms in it, i.e., the energy and the Fourier transform of the potential dis- 
tribution. Thus, the map is just acting in a space of functions. As in the case 
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of usual lattice field theories, one has now to control the action of this map. 
For an excellent review, which has largely inspired our procedure techni- 
cally, we suggest the lecture notes by Gawedzki and Kupiainen~aS~; see also 
refs. 4 and 5. 

The hierarchical Laplacian has a discrete spectrum with one 
accumulation point, which corresponds to the (only) extended state for this 
operator. We refer to it also as the "band edge." Then there are three physi- 
cal situations to be distinguished: (i) the energy is well away from any of 
the eigenvalues of the free Laplacian; (ii) the energy is close to or at one 
of the isolated eigenvalues; (iii) the energy is close to the accumulation 
point of the free spectrum. 

In case (i) we expect nothing interesting; the Green's function should 
be perturbatively close to the free one. We show that this is indeed the case. 

In case (ii) the situation is more complicated, since (--A~+E) is 
vanishingly small on some states. The best we can hope for is that the 
random potentials save the resolvent from diverging. The pole in the free 
Green's function should thus be replaced by a contribution that is roughly 
of size 1/,~f2. We show that this indeed happens. In fact we will see that 
perturbation theory breaks down exactly in the renormalization group step 
in which the hierarchy that is in resonance with the present energy is 
treated. Localizing the problem to this one step allows us to solve it by 
performing one "nonperturbative" step. 

Case (iii) is the most difficult one to analyze. Intuitively, one sees that 
this region should be accessible to this method only if the nonperturbative 
regions around the eigenvalues stay well separated and  do not coalesce. We 
will see that this is the case if ~ > , , ~  (~ > ~f2 corresponds to d >  4 in the 
real model.). In the language of the renormalization group, this case can be 
distinguished also in the following way: In the two previous cases, the 
energy is the most relevant parameter and scales to infinity. All other 
parameters grow much more slowly (if at all), and are therefore "relatively 
irrelevant." Here, the energy is tuned to scale into a fixpoint, corresponding 
to the accumulation point. Therefore we have to consider the second most 
relevant parameter, which corresponds to the variance of/~. Our approach 
is immediately successful only if it is irrelevant, i.e., it scales to zero, which 
is the case for ~ > x/2. The marginal situation with ~ = xf2 could in prin- 
cipal be studied by computing higher orders in perturbation theory, but we 
have not done this. 

Case (iii) is most interesting also because it concerns the extended 
state of A~. A natural guess is that for ~ > ~ it survives in the presence 
of a weak potential, whereas for ~ < xf2  it may become localized. The 
intuitive argument is that since the "spectral lines" in the Green's function 
remain distinct and associated with the particular hierarchy levels, so do 
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the corresponding eigenstates, and a state corresponding to the "last" level 
exists for all sizes of the box. This would then be the extended state. It 
would be most interesting to prove such a result. 

We summarize our results in the following theorem: 

T h e o r e m  1. Let # be the Gaussian distribution with variance 2. 
Then: 

(i) If c~ > x ~ ,  there exists 2o > 0 such that, for 0 < 2 < 2 0, G(~) is an 
entire function. 

(ii) For c~<,/2,  for any e > 0  there exists 2o such that, for 
0 < 2 < 2o, G(~) is analytic for f ~ -  E~[ > e, where E~ is the accumulation 
point in the spectrum of -A~.  

(iii) In the respective regions, G~(~) admits an asymptotic expansion 

in , ~  about a leading term that is singular in 2. This leading contribution 
gives for the differentiated density of states 

dN(E) 1 ~ 1 [ 2 n 1 ~ - -  ,.., exp -- ( E - E n _ I )  2 (1.7) 

where E,  denotes the nth eigenvalue of -A~.  

The remainder of this paper is devoted to proving Theorem 1. In Sec- 
tion 2 we introduce the necessary concepts from supersymmetry, define the 
hierarchical Laplacian in this language, and compute its Green's function. 
Then we define the hierarchical Anderson model and derive the renor- 
realization group equations. In Section 3 we compute perturbatively the 
renormalization group flow and hence the Green's function to leading 
orders. In Section 4 we explain why the approximations made in Section 3 
are justified, i.e., we show how the nonperturbative contributions are 
controlled. 

2. T H E  M O D E L  A N D  S O M E  F O R M U L A S  

In this section we present the basic definitions for our model. Although 
all of this material can be found in the literature, we include it here for 
consistency and for the convenience of the reader. We begin by describing 
the hierarchical Laplacian in the supersymmetric formulation. 

2.1. S o m e  S u p e r f o r m u l a s  

As usual, let ~ denote a superfield, i.e., 

~ = ( ~ ,  0, ~) (2.1) 
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where q~ is a two-dimensional scalar field, and g,, 0 is a pair of anticommut- 
ing variables, i.e., elements of a Grassmann algebra satisfying 

0(x) g , (y)= - O ( y )  tp(x), etc. (2.2) 

Functions of superfields are defined through their Taylor expansion in 
the anticommuting variables, e.g., 

F(q~(x)) = f(q~(x))+ 0(x) h(~(x)) + O(x) k(~(x)) + O(x) ~k(x) g(~(x)) 
(2.3) 

Defining the inner product 

~ (x ) .  g'(y) - q~(x), q~(y) + �89 ~(y) + 0(Y) ~9(x)] (2.4) 

one can introduce the notion of supersymmetric functions: A function F is 
supersymmetric if it is a function of q~2 only, that is, if 

F(45) = f ( ~ 2 ) =  f(q~2)+ 0~j-,(q~2) (2.5) 

There are two natural linear functionals defined for functions of super- 
variables, the ordinary Lebesgue integral w.r.t, the scalar field, and the 
Berezin integral (39~ with respect to the anticommuting variables: 

f r ( ~ )  d~ d o - - g ( ~ )  (2.6) 

For supersymmetric functions this reduces to 2 

f f (~2 )  d2~b = f f(g2) d2~b _ 2~q}O/(O ) (2.7) 

and 

f f (~2 )  d0 dO = _f,(q~2) (2.8) 

so that the superintegral of a supersymmetric function yields simply 

f D ~  f ( ~ 2  ) = f d0 dO d2~b f(q~2 ) = f ( 0 )  (2.9) 
7~ 

2 We always assume that our functions vanish at infinity. 
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The main purpose of this formalism is that it allows us to write the 
following identity for the resolvent of a linear operator on /2(A): 

( y IA  ~ l z > = i f  I-I Oeb(x)~(y)(J(z)e ,(e, Ae) (2.10) 
x ~  A 

where 

(eb, AqS)= ~ 45(x).A~(x) (2.11) 
x ~ A  

2.2. The Hierarchical Laplacian 

We define now the hierarchical Laplacian of Dyson (3 5~ in our 
formalism. While for the ordinary Laplacian restricted to A ~ 7/J we have 

(qs, -AqS)= - ~ qS(x). ~(y) (2.12) 
' I x  - v i i  = l 

x , y ~ A  

the hierarchica! Laplacian -A~ has part of those terms removed and long- 
range interactions added. It is convenient to choose the box A to be 
Ac ~ [2 ~ 2 L] C a ~. Then 

L l 2 L - n - I  

(~, -A~(b)= - 2 ~ ~'q~(~)(21-1).q~)(2/) (2.13) 
n - - 0  l - - 1  

where the fields ~ / a r e  defined recursively by 

qs(+~ = ~(m) 

O~(2(m)=�89 + 1~(2m- a)+qs~-U(Zm)]  (2.14) 

Note that 

and 

q5~1(2/- 1). @~/(2/) = [~(~+~)(/)]2_ [qsu,+~)(/)]2 (2.15) 

2 L n 2 L - n  I 

l = 1  l = 1  

Therefore 
L - - '  2 L n 1 

( ~ , ( - J ~ - O ~ ) =  - E Y, 
n = 0  l = 1  

2 L 

[~b~+ 1)(l)]2 + [~ln+ 1)(/)] 2 (2.16) 

~'{  E ~  + '~(l)] 2 - E ~  + '~(i) l  2} 

l = 1  

L 1 2 L n 1 

= - ~ E  E 
n = l  l = 1  

2 L - I  

- (2~+  1) 2 
l - - 1  

~- ~ { E ~ + , ~ ( l ) ]  2_  Ea,~+'~( l ) ]  2} 

2 L -  l 

[q52;( / ) ]2-(2~- 1) ~, [~b~(/)] 2 
/ = 1  

(2.17) 
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We define the spatially averaged Green's function 3 
2 L 2 L i 

f I] DqS(m) O(1) ~(l) e ~(~'( ~ ;)~) (2.18) GL(~)~ = ~ , = ~  m= 

As a consequence of (2.17), it satisfies 

2 L 1 

GL(~) = i f ]~ Dqb~)(m) DqS(l)(m) 
m - - 1  

xexp i ~ ~ c~"{[~(~+1)(/)]2-[q5~+1~(/)] 2 
n = l  l = 1  

x exp {i (2~ + 1) 2z-I 2 L - I  f ~ E~O)(/)32+i(2~_1) ~ [~o) ( / ) j2  
0{ l = 1  l = 1  

1 2~- ,  
•  ~ {~) (1 )  ~)(l)+~br ~ / ( l ) }  (2.19) 

l = 1  

The integral over ~ )  can now be performed. This just means putting 
q~) (1 )=0  except in the term where ~{1/(l)~{1)(l ) appears. In the terms 
with no ~b~)(1)~(~)(I) present, the 6o~)integrals can then also be perfor- 
med, since their integrands are supersymmetric. The remaining terms are 
seen to reconstitute a Green's function on A L 1, with ~ replaced by 
(2~ + 1)/~. We thus get 

O~ GL 1 -~ 1 -- 2~ (2.20) 

provided L >~ 1. F o r  L = 0 ,  there is no Laplacian term and we get simply 

G~)(~) = i f  D(b(1) ~(1) ~(1) eCe(l)2 = _ 1  (2.20a) 

Defining ~, through 

~o = 

2~,_1+ 1 
for n~> 1 

(2.21) 

the recursion (2.20) has the explicit solution 

L - 1 1  1 1 1  
G~(~)= ~ a ' 1 - 2 ~ ,  az~L 

n = O  
(2.22) 

3 We put ~ = E + ie, i.e., ~ is always supposed to have a positive imaginary part. We take e to 
be zero at the end. 



Density of States in Anderson Model 753 

Thus, G~ has a singularity whenever 2{. = 1 for some 0 ~ n  ~ L - 1 ,  or 
(L = 0. With the explicit solution 

1 (2.23) 
(~ = (~)~ ( ( + ~ -  ~) 2 - ~  

the singularities of the Green's function occur at the eigenvalues of -A=,  
which we find thus to be 

( = ~ " 2 - ~ / 2  1 for 0 ~ < n ~ < L - 1  
E ~ = \ 2 ]  2-c~ 2--c~ 

1 
(2.24) 

Thus, for 0 < e <  2, the spectrum of - A  S is contained in the interval 

[ 1 1= 2] 
2-c~ '  2 - ~  J 

and in the limit L ~ 0% 1/(e - 2) is an accumulation point of the spectrum. 
Combining (2.22) with (2.24) yields the following suggestive formula 

for the Green's function: 
1 1 

G ~ ( ( ) =  ~ 2 ~ + l ~ - E n  
(2.25) 

n = 0  

and as .3~ -+ 0, ~R( = E, 

G~(E+iO)=iTz n =o ~ 6 ( E - E , ) +  ,=o P - - E  - E,  (2.26) 

where P denotes the principal value. The (differentiated) density of states 
(i.e., the imaginary part of G) is thus a sum of delta functions with respec- 
tive weights 1/2 ~+ 1, as expected. 

2.3. The H ie ra rch ica l  A n d e r s o n  M o d e l  

The hierarchical version of the Anderson model we are considering is 
obtained by adding a random potential V(1) to -A~,  

Ha = -A~ + V (2.27) 

Here we take the V(l) to be independent, identically distributed 
random variables, and their common distribution will be chosen to be a 

with variance x/~. Gaussian 
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We will compute the averaged Green's function [again denoted by 
GL(~)]. 

GL(~) = d#(V) GL(G V) 

f 2L ~ 1 2L =i H DqS(l)h(q~2(/)) e-'(~'(-d'-:-) )~Z ~ @(m) ~(m) (2.28) 
•=1 m = l  

where h denotes the characteristic function of the distribution #. We let for 
the moment 

h(q~2(l)) = e - ~e4(t) (2.29) 

We can again try to organize the integrations over q) in a hierarchical 
fashion. This yields 

2 L 1 

GI(~) = i I [ [  D ,~ ) ( t )  De, ' ) ( t )  h([,~2)(t) + r ~) 
[ = 1  

• h([c,2)(t) - r b 
] 2 L- l 

x ~ - ~  ~, [02)(m) r + ~92)(m) r 
m = l  

xexp 2 ac~n-x([o)~+x)(/)]2_[~+l)]2 
1 l = l  

x e x p ) . ~  ~ [0)~)(/)]2+i(2~-1) ~ [q~(1)(/)]2 
l = 1  l = l  

2L l /gqj(O)(l, ~ ) 
= i f  H D45(~ I) D~O)( l) h[ ~ + ' '  ~O)(l)]2 

1 = I  

i } xexp i 2 2 c d ( [ ~ + 1 ) ( / ) ] 2 - [ ~ + 1 ) ( / ) ]  2) 
n = 0  l = 1  

xexp i2~+1 ~ [~b(+o)(/)]2 
'~ l = 1  

x ~ - 5  ~ 1  2L-I { 0 ( +  0 )(m)fi(~ @ (')(m)fi~)(m)} 
m = l  

- ~ [q~2)(/)] 2 (2.30) 
l = l  
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Here we assumed L ~> 1. For L = 0, we get simply 

G~)(~) = i f D@ h(q#) eiCe20~ (2.30a) 

We define 

(2.31) 

and 

(2.32) 

so that 

GL(~)=i H D45(l)exp i ~ 2 ~ +'~(1)]2-[q0('+~)(/)]2 
l = 1  n = 0  l = l  

xexp i2~+1 ~ [~(l)]2 
/=1  

2L-I f 
1 2 L 1 x~--G ~ ~=, h(')([~(1)]2) O(m)~(m) 

r n = l  L /  

~- U h(l'([(~(l)]2)g(1)([~)(m)]) 1 (2.33) 
l # r n  

If g(1) were supersymmetric, we could carry out the ~b integrations in 
the terms containing it and would just get g(ll(0). Our strategy will be to 
complete g(~) to a supersymmetric function by adding an appropriate 
pseudoscalar part and subtracting it from the terms containing q~(m) 0(m). 
In fact, 

' 
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xh( (~-~)2-)-?fd2~--Iexp(i2~-l~2-)]~ o~ 

x {h, ((~q_j_)2) h ((~_~)2.) 

_.kh((~q_~_)2)h,((~_j~ )2)} (2.34) 
The derivative of the scalar part of this function is given by 

Ifd2~m[exp(i2#:l~2-)]{h'( ~ 

X h ((~---(x{-)2) _~_ h ((~}- S )2.) h, ((~---~-)2 ) 

Therefore we may write 

g(1)(g)) = g(ol)(~2)_~; ~ - - [ e x p  ( i ~  --~ ~2_)1 ~ ' ~ -  

x 

g (ol)((p2) -- O0 d(1)(~2) (2.36) 
where g(o 1) is the supersymmetric function with the same scalar part as 
g(1). Substituting this expression in (2.33), the integrals over the terms 
containing g(o 1} can now be performed. This gives, for L ~> 1, 

2 L - I  I" L 2 2 L n 2 G~(~)=if 1-I DqS(/)exp{i ~ ~ ~ . ( [~(~+1~( / ) ]2_[~+~)( / ) ]2  
/ = 1  n = 0  / = 1  

- 2 
O~ 1=1 

1 2 L 1 
x ~ - i  ~ I-[ h(,)([~2(l)])~(m )~(m) [ h O ) ( ~ 5 2 ( m ) ) _ d ( 1 ) ( ~ 2 ( m ) ]  

m = 1 l v ~ m  

+/gO)(O) (2.37) 
0~ 
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The first term can be thought of as a modified Green's function 

) G~ l ;h~l), d~l) 

on AL_ 1. To obtain the general recursion formulas, we have to repeat the 
calculations leading to (3.37) taking the presence of the d(r 2) term into 
account. Doing this, we find that, for L -  n + 1 ~> 1, 

1 GL_,,+I(( . l;h~"-ll, d r ll)=-G~_,,((,;h("),dr 
o~ 

+i [g(,,(O)_6gt,)(O) ] (2.38) 

where 

2~n_l+  1 
~, - (2.39) 

 240, 

d("'(r162163 r f i n  

x [ d ( . - l ) ( + )  h~= l)'(_)_d~.-1)'(+)h~. 1)(__) 

-d("-l)(-)h("-l)'(+)+d("-l)'(-)h{n-1)(+)]} (2.41) 

d2r [- ( . 2 ~ = _ 1 -  l g~ 
g'=)(O) = f - - - ~  Lexp ~t ~ - ) ] lh~=-1)  ( ~ ) I  2 (2.42) 
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and 

(~g(n)(O)~---f-~ Iexp (i 2~n ~1-- 1 r h( .... 1, (~-)  d(n- l) (~.-) 

[We use the abbreviations ( + )  and ( - )  as arguments for ( ~ _ + ~ ) 2 / ~  
occasionally to keep our formulas more readable.] 

For  n = L + 1, i.e., the last step in the procedure, we get 

h !L), d eL)) = i f  Dq~ eieL~[hr d(L)(q52)] G~((L; 
= --i I ~ -eeL~2[h'L)((~2)-d'L)((J2)] 

- i[g ~L+ ~t(0) -- 6g ~r+ ' )(0)] (2.44) 

where the definition of g~L+ ~) and 3g~L+~ in the last line is of course a 
slight abuse of notation. It allows us, however, to express now the Green's 
function through the elegant formula 

G~(~) = i - -  [g(~)(O)-6g(~)(O)] (2.45) n=l an 
with h (~ = h and d (~ = 0. This sets up our basic formalism. We see that we 
have an explicit formula for the Green's function in terms of the solution 
of the recursive functional equations (2.29)-(2.44). We study those equa- 
tions in the next section. 

3. THE PERTURBATIVE R E N O R M A L I Z A T I O N  GROUP FLOW 

In this section we compute perturbatively h(n)(~2), d(n~(~b2), and hence 
g(n)(0) and 6g(")(0), starting with h(cb 2) = e -Je4 and expanding in small 2. 
All nonperturbative corrections will be ignored at this point; the control of 
the errors so produced is postponed to Section 4. 

As a first step, we observe that h ("1 are supersymmetric functions, and 
that we thus need only to compute their scalar parts. Carrying out the 
integrations over the fermionic variables, this gives 

0~ (d _)2 

e h(n 1)' - - (3.1) 
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or, after some partial integrations, in more suggestive form 

h(~)(~2)= h(. l) _~ exp i " --- 
re O~ 

~ ~ ~ 2 

--h(n-1)('(~'~-~-)2)h(n 1 " ( ( ~ - - - s  (3 .2 )  

and 

where 

g~'l(O)= f ~-~--Iexp(i2~" ~!-l ~2 )Jlh(n-~)(~-)J2 (3.3) 

It seems useful to extract the "dominant" part of h (~) by defining 

h('~)(~ 2) = [exp(- .L( "~4) ]  i(n)(q~2) (3.4) 

It is furthermore useful to perform some rescalings. First we introduce the 
functions f ( . /  through 

(3.6) 

We set 
2~,,_1-- 1 
~(2(,,))1/2 ~ z,, (3.7) 

and change the integration variables to 

t= (; ~o))1j2 ~ (3.8) 

and y, the angle between ~ and ~ . Our recursion, expressed for the 
functions f~"), takes the form 

[ (5)] 
l f2=fo  27z dy dt{exp[iz, t-t2-2st(1 + 2 cos2 y)]} 4s cos2 y 

822/59/3-4-15 
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and 

l ff. ; (S_1)I/2 +~-~ ely d t { e x p [ i z . t - t 2 - 2 s t ( l  + 2cos2?)] } cosy 

•  ) f ~ .  ,)(s+t-acosx/~ 7(st) '/2) 

_ f ( . _ l ) ( s + t + e c o s y ( s t )  112 . -  (s+ t - 2  cos 
7 ) i '  '" / ( % }  

(3.9) 

1 (~176 I - f (n- ' ) {  t ~] 2 g(')(0) (2(;)) '/2 Jo e'Z~ L \~ff-2J A (3.10) 

In the same manner we may rewrite the recursion for d (n). We let 
d ( n ) ( ~  2) ~ e - s2T(n)(s) 

The new functions z (~) then satisfy 

lf2~ ~ z(')(s) = - 2 7  dy d t { e x p [ i z . t - t Z - 2 s t ( l  + 2cosZy)]} 

x{4tcos27f(~ 1)(+)f(~ 1)(_) 

(3.11) 

( )lJ2 } 
_ c o s ~ [ f ( ~ - l ) ' ( + ) f ( . - 1 ) ( _ ) _ f ( . - 1 ) ( + ) f ( .  1)'(_)] 

21r d7 dt exp [iz. t - t 2 - 2st(1 + 2 cos 2 7)] 
0 

x {2 cos2 7(s + t)[z~n l~( + ) f(~ 1)(_)+r(n-l)(_)f(n-l)(+)] 

-2c~ ~ L\t/  ks /  J 

X ['C(n-l)'(-'l-)f(n-1)(--)--'C (n 1)(q_)f(n-l)'(__) 

+ Z(.- l)(__ ) f ( . -  1)'(+ )__ r(. 1)'(__) f(.-~)(+)]} (3.12) 
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and 
1 27t oo 

6gr ~ dT; ~ dte'~"'- ' :rl"- ')( t /x/2)f f"-l)( t /~f2) (3.13) 

To  simplify nota t ion  for later use, it will be convenient  to introduce 
two bilinear functionals R and F, in terms of which the recursions (3.9) and 
(3.12) can be writ ten as 

f ( , )=  R ( f ( , -  ~), f (~-  1)) (3.14) 

and 

tin)= F(f~n 1), f~n-,)) 

+ F ( f ( n - l / , z ( n - 1 ) ) + R ( f ( n - l )  ,z( .  1)) (3.15) 

We see that  the recursion equat ions for t h e f  (") are au tonomous ,  while 
those for the r(n) also involve t h e f  ("). We will therefore start  comput ing  the 

f("). Using these results, we can then compute  the r (") in essentially the 
same manner .  

Considering the equat ions (3.9), we realize that  the only paramete rs  
entering into them are the z~. Using Eqs. (2.23) and (2.24), those can be 
e x p r e s s e d  as  4 

z , =  wf ~ [ t - E ,  1] (3.16) 

This already shows some of the essential features we will exploit. The 
z ,  tend to get extremely large, except when ~ coincides with the eigenvalue 
E , _  ~ associated with the par t icular  hierarchy n. The g~")(0) has an explicit 
factor of 1/(2(n)) 1/2. This seems to make  it large; however,  unless ~ is very 
close to En_ 1, the integrand in (3.10) is rapidly oscillating and the integral 
is in fact of order  1/zn, which exactly offsets the largeness of the prefactor.  
If, on the other  hand, ~ = E , _  1, the free Green ' s  function would diverge at 
this point. For  2 nonzero,  the e - '2 te im ensures that  the integral converges 
and is in fact of  order  unity. Ins tead of a pole, we have a large contr ibut ion 
of size 1/(2~n)) 1/2, which of course diverges as 2 approaches  zero. 

In this discussion we have ignored the function f(n/. The remainder  of 
this paper  is essentially devoted to showing that  this is justified, i.e., to 

4 The equations in this section so far are valid for n ~< L only. Notice, however, that if we 
define z, through Eq. (3.16), with E L as given by (2.24), then (3.10) and (3.13) are also valid 
for n = L + 1, so that in the sequel we will not have to treat the last renormalization group 
step separately from the others. And of course E L converges to - 1 / ( 2 -  cQ at the same rate 
as Ec_ ~. 
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showing that  the functions f(~) remain for all practical purposes  close to 
one. 

F r o m  the form of our  recursion equat ions we see that  there are three 
distinct cases that  we must  distinguish in our  discussion: 

1. ~ is not  near  the spectrum of - A ~ ,  i.e., 

I En - ~] ~> e. for all n 

Together  with (3.16), this guarantees  that  
g 

2. { is near  a resonance of finite order, e.g., 

In  this case zk +1 is small, while all the other  z,  are big; in fact, 

Iz~l > ~ - - ~  - -  

3. ~ is close to the accumula t ion  point  of the spectrum, i.e., 

IC-Eool  ~ 0  

In  this case, 

and is thus growing only for c~ > xf2. 
We begin by dealing with the easiest case, case 1. 
O u r  first concern is to analyze carefully the function f(l~(s). Since 

f (~ = 1, 

f ( 1 ) ( s ) = l - ~ - s  ~ d7 dt {exp[izlt-tZ-2st(l+2cos27)]}4scos27 

(3.17) 

Evidently,  f(~(s) is an entire function. We will find in the next section 
global bounds  in appropr ia te  domains  of the complex s-plane. At this point  
we a l ready note that  as ]sl --* oo with 91s > 0, 

2 (' 2 cos 2 7 1 
f~l~--" 1 - ~ J d~ 1 +  2 cos2 ~ - f ~  (3.18) 
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For zl large and s bounded, we can expand f (1~ in powers of s ize .  For 
the purposes of this section we need the power series expansion of the 
logarithm o f f  (1) up to order s 2 for Isl < c. Here c will be chosen small com- 
pared to zl. The reason why we expand only to second order is that the 
coefficients of higher powers of s scale to zero under the leading part of our 
iteration, i.e., f(s)---~f(s/x//2) 2. If l n f ( s ) =  Z ak sk, then under n iterations of 

this map it transforms to ~2 ak[2"/(x/2) ~"] s k. 
The computation of the expansion proceeds by expanding the e - 2 " '  

term in the integrand. The rest is straightforward. We get 

lnf(l)(s) = -i2Ii+o( )]s-x/-s 

ls ) 
+ 0  (3.19) 

We may think of the coefficients of is and s 2 as small perturbative 
corrections to ~1 and 21, respectively. Note, however, that (3.19) is 
qualitatively incorrect for s > z l ,  where f(l~ approaches a constant. The 
nonperturbatively small coefficients of - s  and - i s  2 have been kept for the 
sake of completeness. They are of no consequence and will be dropped 
from now on. 

It is now easy to compute the recursion relation for the coefficients of 
s and s 2 of l n f  (~). We write (for s small) 

f~n) (s )  = exp]- -i lzns - l n s  2 + 0($3)] (3.20) 

and plug this into the equation for f ( n+ l (  Of course, the range of the 
t-integrations exceeds the domain of validity of (3.20). We will show in the 
next section that this introduces only errors that are exponentially small in 
z,.  Given this, we obtain 

ln+ 1 ) 
(1 @ ln) 2 

- [to * 8 

- ] - 0  2 , _3 , 3 
Zn+l ' ~ n + l  Zn+i 

(3.21) 
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From this we identify ~.+~ and l.+ 1, which to leading order satisfy 
thus the system of equations 

2( / .+  1) #n+l=N~l~n-~Zn:i27#n 
(1 + l.) 2 

I.+~=I.+8 
(Zn+I- N~ ~n) 2 

(3.22) 

It is convenient to introduce 

1 
rn" = (x/-~)n - - - # ~  (3.23) 

and to rewrite (3.22) as 

m n +  1 

ln+ 1 

1 2(1 + I.) 

1 8(1 + 1.)2 
(3.24) 

In the purely perturbative case, i.e., when ]~ -E , [  ~>e for all n, this 
recursion relation converges extremely rapidly due to the presence of the 
explicit exponentially decaying factors that multiply the nonlinear term. 
The solution is then virtually equal to the first nonzero term, i.e., 

m n  "~ m l = ~ _ E o  
(3.25) 

2;c 
l, ~ l~ - (( _ E0)~ 

Thus, except in small regions of approximate size ~ ( ~ ) ~  around 
the eigenvalues E. of - A s ,  the Green's function is equal to that of -A~,  
up to corrections of order w/2. 

We turn now to the more interesting case where ~ ~ Ek. In this case, 
one can perform the above procedures k times without problem, as before. 
However, zk+l will be close to zero, and in the computations o f f  k+l and 
gk+l we cannot use it as a large parameter. 

Let us return to Eq. (3.12) and illustrate what happens in the simplest 
case, k = 0. We see that the convergence of the integral is still assured by 
the e t2 term, and for s small we may, as before, expand in powers of s. 
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This time, however, it makes no sense to expand the coefficients in powers 
of 1/Zl. We get 

f(1)(s) = 1 - 2is f dt sin(z1 t) e -~2- s ~ e -d/4 

+ 5i ~ zle-Z~/4s 2- lOs; f dt COS(Z, t)te -t2 

or, 

+ O(s 3) 

For zl = 0, this Simplifies to 

f(l)(s) = 1 - xf~ s + 5s 2 + O(s 3) 

(3.26) 

(3.27) 

 xpl ] 
Corrections to the coefficients of s and s 2 for small but finite zl grow 
linearly, resp. quadratically, with zl, and are bounded of order unity for 
any z~. Of course this time, the Taylor expansion to second order is good 
for s ~ 1, and therefore the fact that the coefficient of s z is positive should 
not cause us to worry. We will never use this formula for large s. Globally, 
as we will see in the next section, f ( ~  remains bounded for positive s. 

If zk+~ is close to zero instead of z~, we get qualitatively the same 
result, this time for f(k+l), since f(kl is equal to one up to perturbative 
corrections. 

After this step, the integrals appearing in all the further iterations have  
again a rapidly oscillating factor e iz"t. Therefore, all corrections to the 
leading scaling of f (~+~ from here on will again be perturbative. The 
leading form o f f  (n/for small s, and n > k, will be of the form 

Note that the estimates here are not uniform in k. For fixed k we must 
choose 2 sufficiently small, for everything to work. The most subtle ques- 
tion arises when ( is close to the accumulation point E~ of the spectrum 
of -A~.  

A simple consideration can already tell us what to expect. We have 

seen before that a region of width x ~  (w/~) k about the kth eigenvalue 
requires a nonperturbative estimate in the kth step. On the other hand, the 
distance between successive eigenvalues shrinks like (~/2) k. Therefore, if 
~>  x/2, those regions (we would like to think of them as spectral lines) 
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stay well separated as k ~ o% while for k < x/2 they will eventually over- 
lap, no matter how small l is. In this case, the region near the accumulation 
point should not be accessible to a perturbative analysis. 

How do these features show up in our scheme? We want ~ ~ E~.  Up 
to now we have always ignored the shifts in the position of the resonances 
due to #n, since they were small. Here we can no longer do this. The peaks 
in the Green's function occur where z , -  x/2/~n_ ~= 0, or 

~=E,,_l +x/2m,,_~ (3.30) 

With m, of order x/2, the shifts are of order 2. We expect the band edge 
at an energy 

~=Eoo + x/2 e(2) (3.31) 

where e(2) ~ ~ should be tuned so that for this energy z, - , , ~  #, ~ goes 
to zero as n goes to infinity. 

The recursions for m, and l~ read in this case 

1 2(1 + ln) 
mn + 1  ---- mn + (x/~), +1 (1/x//~)(~/2), +1 (2 -- c~/2)/(2 -- c~) + e(2) -- mn 

( , 2 - - - ~ / ~ 2 -  ~) + e ( 2 ) -  ms )2 
2(1 + l,) 

ln+l =ln+ (1/~)(C~/2)n+l (3.32) 

The question is now whether we can choose e(2) consistently. The answer 
is yes, if e > x/2, for in this case, assuming first e ( 2 ) -  mn >~ 0, we get 

m,+1 ~<mn+2 c (3.33) 

implying 

mn+ 1 ~< c2 (3.34) 
I 

which converges for ~ > x/2. Thus, for e().) bigger than the limit of this 
series, the assumption is certainly satisfied, and we may choose the true 
e()o) as the infimum of the set for which this holds. (The In have been 
ignored in this discussion, but it is easy to see that they do not change the 
picture, since they, too, stay small when mn does). Note that at this value 
of the energy ~, 

1 / ~ \ ' 2 - ~ / 2  
~> - -  - -  ~_--~ (3.35) 
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and thus the corresponding g(")(0) are of order one (see below). For all 
energies below E~o + e(2), (z, - #,) will cross zero exactly once. At most for 
one value of n it can happen that [z~- #,[ ~< O(1), which would require one 
nonperturbative step. For all further steps, ( z , -  #,,) is at least as big as in 
the case of the band edge, so they can be performed perturbatively. 

Thus, for e > x/2 there is no problem even near the band edge. The 
case e = x/2 is marginal and one might analyze it by computing the next 
order in perturbation theory. The case ~ < , , ~  should require some non- 
perturbative analysis and is not within the scope of our present efforts. 

Finally, we have to compute the g(~)(0) for the various cases. 
Whenever z, is large, this is again done perturbatively; we get 

g(~)(O) - ( / ~ ( n ) ) l / 2  

1 1 
(,~(.))ln 

z.  - , f 2  uo_ 

To leading order, this equals 

+ (2(n))u---- ~ 0 (3.36) 
Z n - - N ~  [ l n _  l )  2 

- - i  m _ _  
2 ~ + 1 ~ - E  n 

which is what one gets for the free Laplacian -A~.  
In the case where z~ ~ 0, the integral in (3.28) is controlled by the e -~2 

term. f ( " - l )  is still perturbatively close to one at this point, so that the 
leading contribution is given by 

1 
g(")(O) ~ (2(.5)5Z f dt e '~"'-'2 

The real part of this integral is readily evaluated and gives 

~flg(n)(0)~ ~ exp - ( ~ - E n _ l )  2 (3.37) (;(.))1/~ 

We now have to turn to the computation of the contributions 6g(")(O) 
to the Green's functions and hence to the functions r ("). Considering the 
structure of the recursion relations (3.15), we see that the solution will be 
of the form 

~(n~(s) = ~ ~I")(S) (3.38) 
i = 1  

where 

vn(n)-F(f ~),f(n-1)) (3.39) 
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and, for i < n, 

zl.) = F(f(n- 1), ~(n 1)) + R(f ( . -  1), ,~,(n-- 1)) (3.40) 

Let us first consider ",'(") W i t h f  (" 1) given by (3.20), this term reads, ~ ,  �9 

on the same level of approximation as we used above, 

1 t2 z(~n)(s) : - ~  f d7 f dt exp[iz . t -  - 2s/(1 + 2 cos 7)] 

x exp[ - i ~ #. _ l(s + t) - I._ l(s 2 + t 2 -1- 2st(1 + 2 cos 2 y) 

+ O((s, t ) 3 ) ]  4 t  c o s  2 '7(1 + In_l) + O((s, / ) 3 )  

1 
= - [ e x p ( - i , , f 2 # .  l s - l .  lS2)]2--~ 

x f a7 f at exp[ i (zn-  xf2 lXn--1)t-(1 + ln) 

X I t  2 - -  2st(1 + 2 cos y)] + .-. ] 

x 4t cos 2 7(1 + In l) + O((s, 0 3) (3.41) 

In the integral in (3.41) we expand again in powers of s. Retaining only the 
lowest orders in 1/z,, this gives 

2(1 + ln_ l )  (1 + / . _ l )  2 
+ i20s 

tzn--  n l) 2 

156s 2 (1 + In 1) 3 
- -  - 1 -  . . .  

(Zn--N~ #n--1) 4 
2(1 + I._1) r 10(1 + l ._ l )  

= (z277 ,u .~_  ,) 2exp Li(z,~--~#Xn_,) s 

Thus, 

28(1+1n_1) 2 s2 + . . . ]  

( z . - , M ~ . _ , )  2 J 
(3.42) 

r~n)(s ) =  2(1+ln l) 

( z . - , , / 5  ~.  l) 2 

xexp - i  # , - ,  (Zn--.,f2/tn 1) 

-@ l+ 28(1+l"-112 ~2 
(Z.--.,/Z#n ,)2/ + "''J 

2 
n 

(3.43) 
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where in the last line any corrections of order 1/z n are ignored. The total 
is of order 1/z 2 and therefore a correction of order 2/2 ~ if ~ is not close to 
E n - -  1 �9 

The situation is different if ff ~ E~_ ~, i.e., we are performing a nonper- 
turbative step. As in the calculation o f f  (~, we can then not expand in l/z,,, 
but control the integrals by the e -s: decay. We can expand the result in 
powers of s to second order with bounded coefficients (and remainder) that 
are, however, no longer small. For z , -  . , ~  # = 0, the result reads 

1 .~/-~ 5/2 
z~")(s)= 1+I ,_1  t - S ( l + l ,  1) 1/2-13S2+0($3) (3.44) 

It is now straightforward to analyze the recursion for the ~!"~ Since we 
know that r~ k~ is essentially equal to C(Zk)f (k), with c(zk_)~ 1/z 2 for z~ 
large, and bounded otherwise, with c(0)= -1 ,  we see that up to minor 
corrections, 

"cln)"~c(zi) ( I  [1 + c ( z , ) ] f  (n) (3.45) 
l = i + i  

The product converges for n-~ ~ ,  and unless z~ is small, the whole is a 
small contribution of order )]2( Moreover, they are summable over i, so 
that finally all of r(~ is essentially equal to f(~) times a constant that is 
determined by the contribution with smallest z~. In particular we get the 
following results. 

1. If IE~-~I >e  2 for all n, [c(z~)[ <2/Te  and thus 

~ ' =  i ~ l " ) ~ f ( ~  (3.46) 
i = 1  

and thus 

6g~n)(O) ~ ~ g~n)(O) (3.47) 

2. If I ~ - E A  =O(,,f~/(,,/2)n), SO that z~+l is not large, the ~ ) f o r  
n < k + 1 [and thus the 6g(n~(O) for n < k + 2] are of the same form as in 
case 1, i.e., represent corrections of order 2, while for n ~> k + 1, 

r ~n~ ~(n~ + 0(2) ~ O ( 1 ) f ~ ) +  O()o) (3.48) ~ k + l  

Thus, for n/> k + 2, 6g(n)(0) is of the same order of magnitude as g~)(0). Of 
course, this does not concern the dominant singular contribution to the 
Green's function that in this case is given by g~k+l)(0). 
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3. For energies near the accumulation point of the free spectrum, the 

situation is the same as in case 1, if x/~ > ,,f2, since all we needed there was 
exponential growth of the z,.  Thus, here again the 6g(n)(O) are a perturba- 
tion of order 2 compared to the g(~(0). 

Summarizing all those results, we find that, if e > x/2, to leading order 
the density of states near an eigenvalue is a Gaussian about this eigenvalue 
with a rescaled variance, i.e., 5 

dNx(E) 1 ~ 1 1 [ 2  n ] 
en exp - (3.49) dE ~ n = l  (,~ (n)) 1/2 4"~ (~ --  En - 1) 2 

away from those regions it is small of order x/2, and we thus have the for- 
mula claimed in Theorem I of section 1. For  e ~< ~ the same formula 
holds true except in a 2-dependent neighborhood of E~ within which our 
analysis does not give us any control and within which nonperturbative 
effects will dominate. 

4. N O N P E R T U R B A T I V E  E S T I M A T E S  

In this section we show that the approximations made in the last sec- 
tion are justified, i.e., that all the errors add up only to negligible contribu- 
tions. We will carry out the explicit analysis for the functions f(n) only. The 
recursion for the r(n) are of essentially the same type and the same analysis 
applies with minor modifications. 

In our perturbative analysis we neglected the contributions from the 
t-integrals over regions where the argument o f f  ~n) becomes large. This was 
motivated by the observation that in those regions the e iz"t oscillates very 
rapidly, and the resulting terms should be nonperturbatively small. To 
exploit this in a rigorous manner, we will deform the t-integrals into the 
complex plane; this will require, however, bounds on the functions f(n) in 
the corresponding domains of the complex plane. We will start to establish 
such bounds for f (~ ,  which is given as an explicit integral. Corresponding 
bounds on f(n) are then proven inductively. Finally, we show the implica- 
tions of this for g(n). 

We split our discussion into the cases l( - Enl > e, ~ ~ Ek, and ~ ~ E~.  

s The Gaussian form of the real part of the g(")(0) was proven near the corresponding maxima 
only. In the other regions, this contribution is smaller than the next-order correction. This 
should be taken into account when reading (3.49). 
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The function f(1)(s) can be conveniently expressed in terms of the 
probability integral 

+ 2 i  ~ e,2dt~ ) w(u) = e-U2 ( 1 ~/~fo J (4.1 

which has been investigated extensively (see, in particular, ref. 40). We have 

1 
f(1)(s) = -~n f d7 {1 - x/~ 2 cos 2 7sw[is(1 + 2 cos 2 7) + z1/21 } (4.2) 

Using the mean value theorem, we see that we may bound the absolute 
value off(1)(s) by a uniform bound on the function 

1 - x ~ ( P  - 1) sw[isp + z~/23 (4.3) 

for 1 ~<p~<3. 
The function w(u) is an entire function, and ref. 40 provides series 

expansions, asymptotic formulas, and tables for it. Of particular use is the 
integral representation 

i f ~ e -'2 (4.4) 
W(~l) 

valid for ~u > O. The region of .~u < 0 is accessed through the relation 

w ( - u )  = 2 e - " 2  w(u) (4.5) 

From this integral representation ref. 40 obtains a quadrature formula for 
w which is very efficient even for moderately large u: 

w(u)= ~ _x~)+Rn(u) (4.6) 
k = l  u 

where the x(k n) are the roots of the nth Hermite polynomial, and 2~ ~ are the 
corresponding coefficients. The convergence of this expansion is extremely 
rapid, with the error term given by the asymptotic expression 

Rn(u) = 2 ( -  1) ~ (Ke ~- 1),+ 1/2 

where 

(4.7) 

[1 -- (2n + 1)/u2] 1/2- 1 
~c -- [1 -- (2n + 1)/u231/2 + 1 (4.8) 



772 Bovier 

We will only use this formula  with n = 3. It gives an accuracy of six digits 
for u of order  bigger than  five and reads explicitly ~4~ 

ia o 2ia 3 u 
w ( u )  ~ - -  -~ u u 2 - x  2 (4.9) 

where a 0 = 0.37612639, a3 = 0.09403160, and x 3 = 1.2247449 
As a first observa t ion  we make  the following remark.  

R o m a r k  1. L e t s = x + i y ,  w i t h y = k x .  Then, a s x ~  + ~ ,  

f ~ l ) ( s )  ~ 1/x/-5 

This result can be read off the asympto t ic  formula  (4.9), or  directly 
f rom the defining formula.  Note  that  a o + 2a3 =- 1/~/-~. 

We will need to control  f (m  on the domain  

{ s =  (:~+ iY) 2 I:~ ~ ~, lYl ~<q} (4.10) 

The  following bounds  on f(~) will be seen later to p ropaga te  to the f(n): 

k e m r n a  2. Let z 1 be large; put  s = x + i y .  

(i) If Is] <eZ l ,  then 

l/(1)(s)l ~< ek~y/zl k2(x2- y2)/z~ 

where k l ,  k2 are constants  of order  unity. 

(ii) If  [Yl < 2 v  , ,fx, x >  (2v) 2/3 Izll 2/3, then 

f ( l l ( S )  <~ 1 

Again, this is easily obta ined f rom the asympto t ic  expression (4.9). 
Cor responding  bounds  on the functions f(n) wilt be proven  inductively. 
Let  us now look back at the recursive equat ions  f o r f  (~), (3.9). We will 

first consider the si tuat ion where f ~ - E n [  > e for all n. To  make  use of  the 
rapid oscillations in the integrals, we deform the integrat ion contours  of  the 
t-integrals in the following way: Let t = (7+ i6) 2 with 7 real and 6 a fixed, 
small real number .  The  sign of 6 is chosen in each step such that  the real 
pa r t  of zn6 is positive. We first integrate t a long the straight line f rom zero 
to 8 6 2 + 6 i 6 2 = ( 3 6 + / 6 )  2, and then along the pa th  t = ( 7 + i 6 )  2, with 
7~> 36. 6 The  second par t  of  the integrat ion pa th  will always produce  a non-  

6 This choice of the integration contour is quite arbitrary. All we have to assure is that the 
small-t part of the contour is sufficiently small so that [s + t +_ 2(st) 1/2] with s in the new 
perturbative region is in the old perturbative region, and that largtl <7r/4. It may be 
convenient to extend the integration much further along the real axis. 
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perturbatively small contribution of order e -z'a2. The deformation of the 
integration contour does not change the integrals, since all functions that 
appear (for finite n) are entire, and vanish at infinity on the right half- 
plane. 

Suppose we have perturbative control over our function f ("  1)(s) for 
Is] < c,_ 1, i.e., 

f(,,-1)(s)=e-i~,~ is ln-lS2WO(kn-I $3 ) 

The term [f("  t)(s/x/2)]2 can then be evaluated from this formula for 
Is[ < ~,/-2 c._ ~; the integral over t, ignoring thef ' s ,  can be expanded in s/z., 
where Isl r z. ~ (x/2)"/x/~. Finally, the arguments of the f ( ' -  ~) remain in 
the perturbative region during the small-t integrations (i.e., from zero to 

862+6i62), provided lsl <x f2c~  1-1062. It is therefore consistent to 
choose c. as 

Cn = C(N/ '2 )  n 

where c is chosen small compared to e/x/-~. 
What about the error term? The i f ] 2  part of the recursion transforms 

the O(s3kn 1) into O(s3kn i/X//'2). The t-integral produces a new error 'of 
order O(s3/z3), and the error terms in the integrals, apart from subleading 
corrections to the coefficients of s and s 2, contribute to the new error terms 

Z 2 of size k ,_  1/ , ,  which under our assumption are much smaller (and scale 
to zero faster) than the leading one. Since k~ = k/z~, it is thus consistent to 
choose 

This settles the perturbative estimates forf(')(s). We still need to show 
that the integrations over large t indeed contribute only terms of order 
e -~'~2 to the perturbative computations, and to show that for s large and 
in the domain of integration, the functions f ( ' )  satisfy the bounds needed 
in the previous step. 

We are now ready to state our main result concerning the functions 
f( ' ) :  

Proposition 1. For all n,f( ')(s) satisfies: 

(i) On the domain Dp(n) given by 

Dp(n)= {s= ()7+ iy)2 [ Is] < c , ,  137[ <~7} (4.11) 

with ~/ a suitably chosen (small) constant and c ,  ~ c (w/2 )"  ~ z~,  

f(m(s) = e  i~.,-~.s2+o(,3k,,) (4.12) 
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where k. = (x/2)3/(x/2) ", and the coefficients #. ,  1. are to leading order 
given by the solutions of the recursions (3.18). 

(ii) Let s = x + i y .  For y<2r / .~ fx  and x>b.(2rl)  2/3, where b . ~  
(xf2) -2/3 (x/2) n, then 

If(~)(s)l < 1 (4.13) 

ProoL The proof of this proposition is inductive. For n =  1, (i) is 
easily established from Eq. (3.12) using Taylor's formula with remainder. 
To obtain the O(s3/z~) estimate for the remainder, one just has to deform 
the integration contour as indicated above, and exploit the fact that the 
"large"-t piece of the contour gives only an exponentially small contribu- 
tion. Part (ii) is obtained using the asymptotic expansion (4.9) and the 
expression (4.3) for f(1). 

For the inductive step we assume (i) and (ii) f o r f  ( ' -  1)(s). The pertur- 
bative expression for f( ' ) (s)  for small s then results from the small-t 
integrals, as discussed above. [Note that we have restricted the regions 
Dp(n) by the condition IPl < ~. This was mainly done in view of the case 
( ~ E ~ ,  as we will see below.] To control the large-t integrals, we must 
control the f ( n -  1)([s + t +_ 2(st) m cos 7]/x/-2) along the path of integration 
either by the perturbative estimate (4.12), or by the bound (4.13). The way 
our regions are chosen, one or the other always apply. The integrals for 
large t will be estimated in absolute value. This involves the integral 

I~ dtexp{ -2 z"67 - ( ' {2 -62 )2+46272-2[x ( ' [2 -62 ) - f yT] ( l+2c~  
> 30 

x 4 1 s l c o s 2 7 f ( ' - 1 ) ( + ) f ( ' - l ~ ( - ) +  if( ,  l / , ( + ) f ( ,  1)(_) 

_f( . -  1),(_ ) f(n- l~(+ )1 } (4.14) 

Here the plus signs and minus signs in the arguments of the f ("  1) are 
shorthand for the s + t +__ 2(st) 1/z cos 7 of Eq. (3.9). Note that the f (n -  1) in 
the integral are either bounded by one (if t is sufficiently large), or grow at 
most like e x p [ # , ( ? + f f ) ( 6 + q ) ] .  Equally, the only potentially dangerous 
factor in front of the f ' s  grows like exp(26yT). Since we have chosen 6 and 
~/constant, and y < x /x  ~/, with x ~ zn, the decay of the e x p ( -  2zn 67) term 
dominates all growing terms, and the integral (4.14) gives in fact a con- 
tribution of size 

[s] e -z'a: 

only. 
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Estimating f(") for s large proceeds in a similar manner. We split the 
integration contour as before. For small t, we expand f ("  11 in a Taylor 
series with remainder, 

f ("-  ~) ( t + s +-2(st)l/2 c~ '~)= f (" x/~ 1) (~22)  

t+ 2(st)1/2 COS (~22)  + - ~/2 7f(n 1,' 

+ R(2)(s, t) 

where the second-order remainder is bounded by 

IR(2>(s, t)] ~ max It +2(st) 1/2 
0_.<O_<l 4 

Thus, 

(4.15) 

cos T]Zf(,_ l;, (s + O(t +-2(st)I/2 cos T) ) 

f ( . - 1 ) (  + ) f ( " - ' ) ( _  ) = [ f ( " -1 ) ( s /~ f2 ) ]  = + . . .  

and 

f(n 1)'(+)f(n--1)(__)__f(n--X)(+)f(.--1)'(__) 

= 4(st) 1/2 COS v[f("-- 1)'(S/xff2)]2 + "" 

where the terms we did not write involve extra factors of t and derivatives 
of the fi Bounds on the derivatives of f ("  1) follow from the Cauchy 
formulas and the bound (4.13). They imply that 

1 
f~" l~(k)(s) (4.16) ( J , /Tf 

Since each factor of t produces a factor 1/z,, one sees that in fact all those 
terms produce corrections that are of order 1/z, relative to the leading 
terms. If we indicate the z dependence of the f by a subscript, this leading 
form can be written suggestively as 

(n) fz~ (s)~ [ f~  l)(s/xf2)]2 f(z~)(s ) (4.17) 

This will certainly have absolute value less than one in the domain required 
for f(n), and for ~, large enough, the corrections cannot alter this fact. 

Finally, we have to show that here, too, the large-t integration 
produces only an exponentially small correction. The proof proceeds as 
before. The arguments o f f  (" 1) now always lie in the regions where the 

822/59/3-4-16 
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f(n-1) are bounded by one. The derivatives o f f  (n 1) satisfy the same (or 
even better) bounds. Since the imaginary part of s is always smaller than 
the root of the real part, no growing terms appear in the exponential in 
(4.14), and we get again, as desired, a bound e -z"62. This concludes the 
proof of Proposition 1. 

An immediate corollary of Proposition 1 is that away from the spec- 
trum of A~, the perturbative computation of G~(() in Section 3 is correct 
up to exponentially small corrections. 

We turn now to the case ( ~  Ek, for some fixed k. The essential dif- 
ference compared to the previous situation occurs only in the ( k +  1)th 
step, where z~+l is near zero, and the integrals cannot be reasonably 
expanded in inverse powers of it. For f(k)(s) we still have the information 
of Proposition 1, since all the previous z~ have been large. 

The equation for f (k+l~ is again (3.9); however, we must control the 
integral by the e t2 term rather than by the e izk+l` term, over which we 
have no uniform control. Therefore, it is not useful to deform the t-integral 
into the complex plane, since we get maximal decay in the real direction. 

The functions f(k) have perturbative estimates valid in a region 
Is[ < ezk. The t-integrals for values of t larger than that will give only terms 

- -  ~ 2 z 2  ' k of order e k. Expanding as before f (  ) about s/x/2, we get as a leading 
term 

f(k+ 1)(s ) ~ Ef(k)(s/~]2 f~k~+~ ~o(S ) (4.18) 

Again the corrections are irrelevant: For s small (compared to zk!) the 
derivatives off/k) that appear are smaller by factors of at least #k than the 
f(k) themselves. For s large we use that 

f dt e - t2-2st(1 + 2 ~176 7) t~  1 ~S~ (4.19) 

and that the derivatives o f f  ~k) decay according to (4.16). 
To continue, we must thus analyze f(o~l(s). For s small (compared to 

one this time), we have the perturbative formula (3.22). For larger values 
of s, we have the following result. 

Lemma 3. For 9~s~> [~s[, 

f(ol)(s)l ~< 1 (4.20) 

ProoL This is in fact a simple consequence of (4.3) and the integral 
representation (4.4). They allow us to write 

[f(~ = x ~  fo ~ dt e-'2 P~-~--2+-t~p s + t (4.21) 
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Since 1 ~<p ~< 3, the absolute value of this integral is bounded by one, 
provided only 9ts 2 >/0. 

For f(k+ u this leaves us with the following information: We have to 
distinguish three regions now: 

Proposition 2. IfZk+l~O,f(k+~)(S) satisfies: 

(i) For s very small, s < c ~  1, we have the expansion in powers 
of s, 

f(k+I)(s)~exp[--N~s--iN~/.LkS-~-(S--;)s2--lkS2-JI-O(s3)] (4.22) 

(ii) On the domain Dp(n) [see (4.11)] we do not have complete 
perturbative control, but since If(ol)(s)l ~< 1 there, we have the bound 

I f  (h+ t)(s)] ~< exp(xf2/~k3S -- )-k ~lS 2) (4.23) 

which is in fact all we need in the further iterations. 

(iii) Finally, with s = x + iy, for y < 2t /xf~ and x > x/2 bk(2q) 2/4, 

r f ~  + "(s)f  <~ 1 

Checking through the proof of Proposition 1 with Proposition 2 as 
input, we see that we can carry these statements into the next hierarchies 
as before. This implies that the perturbative results of Section 3 are correct 
also in this case. 

Finally, we discuss the band edge. In view of our discussion in 
Section 3, this means ~ = E~ + ~ e(2), and perturbatively [ ~ , -  #,] >~ 
1/2(a /~) ' c .  For a > x f 2  this is still growing exponentially with n, 
although not as fast as before. Thus, the size of the perturbative regions 
D p(n) is also smaller, but growing, i.e., we will choose the cn proportional 
to ( a / x ~ ) ' ~  ]z ,-#, , I .  A problem arises with the large-s bounds on f( ') .  
In Proposition 1 we have the stability bound only for 9 t s > b , ,  where 
the b,, grow like (x/2)' .  The reason for this is that once such a bound 
is established for, say, fro(s) and Is] <b,  [f(1)(s/(x/2)")]2" will satisfy it 
only for 2/(x/~)n<b.  Thus, there appears to be a gap between the 
perturbative region and the region where we have a stability bound. 

However, this problem can be solved as in the previous case by extrac- 
ting a perturbative bound like (4.23) in the intermediate region, that is, we 
have the following result. 

Proposition 3. For ~..~ E~ + x/2 e(2), and if a > x/2, f(") satisfies: 

(i) (4.12) with the coefficients #,  and I, computed to leading order 

from the recursion for Is] < c, ~ (cqx/~)', and t.91 < t/. 
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(ii) A bound  

I f~ ' )(s) l  ~< exp [ (x /~ ) " / t l  3 s  - 1 1 ( ~ s  2 - -  . .~$2)  "] (4.24) 

for s beyond  the per turba t ive  region, but  Isk < c (x /2)  n. 

(iii) If(n)(s)l ~< 1 for s as in Propos i t ion  1. 

This bound  in the in termediate  region propaga tes  due to (4.17) and 
the a rguments  presented there. 

We m a y  summar ize  our  results as follows: In all three cases, the infor- 
ma t ion  on f("~ thus obta ined  suffices to show that  the g('~(0) are given by 
their per turba t ive  expressions as found in Section 3, plus errors that  are 
exponent ia l ly  small  in zn. Since the expansion paramete rs  in all cases con- 
verge exponent ial ly  fast to zero with n, the summat ions  over  the hierarchies 
are convergent  and the result is an asympto t ic  expansion for the Green 's  
function, with bounded  error  terms. These allow us to cont inue G~(~)  as 
an analytic function of ~ f rom the upper  half-plane to the entire complex 
plane, for 2 ~ 0 and small enough. This proves  Theorem 1. 
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